Mitochondrial reactive oxygen species and calcium uptake regulate activation of phagocytic NADPH oxidase.

نویسندگان

  • Sergey I Dikalov
  • Wei Li
  • Abdulrahman K Doughan
  • Raul R Blanco
  • A Maziar Zafari
چکیده

Production of superoxide (O(2)(·-)) by NADPH oxidases contributes to the development of hypertension and atherosclerosis. Factors responsible for activation of NADPH oxidases are not well understood; interestingly, cardiovascular disease is associated with both altered NADPH oxidase activity and age-associated mitochondrial dysfunction. We hypothesized that mitochondrial dysfunction may contribute to activation of NADPH oxidase. The effect of mitochondrial inhibitors on phagocytic NADPH oxidase in human lymphoblasts and whole blood was measured at the basal state and upon PKC-dependent stimulation with PMA using extracellular 1-hydroxy-2,2,6,6-tetramethylpiperidin-4-yl-trimethylammonium or mitochondria-targeted 1-hydroxy-4-[2-triphenylphosphonio)-acetamido]-2,2,6,6-tetramethylpiperidine spin probes and electron spin resonance (ESR). Intracellular cytosolic calcium [Ca(2+)](i) was measured spectrofluorometrically using fura-2 AM. Incubation of lymphoblasts with the mitochondrial inhibitors rotenone, antimycin A, CCCP, or ruthenium red (an inhibitor of mitochondrial Ca(2+) uniporter) did not significantly change basal activity of NADPH oxidase. In contrast, preincubation with the mitochondrial inhibitors prior to PMA stimulation of lymphoblasts resulted in two- to three-fold increase of NADPH oxidase activity compared with stimulation with PMA alone. Most notably, the intracellular Ca(2+)-chelating agent BAPTA-AM abolished the effect of mitochondrial inhibitors on NADPH oxidase activity. Cytosolic Ca(2+) measurements with fura-2 AM showed that the mitochondrial inhibitors increased [Ca(2+)](i), while BAPTA-AM abolished the increase in [Ca(2+)](i). Furthermore, depletion of cellular Ca(2+) with thapsigargin attenuated CCCP- and antimycin A-mediated activation of NADPH oxidase in the presence of PMA by 42% and 31%, correspondingly. Our data suggest that mitochondria regulate PKC-dependent activation of phagocytic NADPH oxidase. In summary, increased mitochondrial O(2)(·-) and impaired buffering of cytosolic Ca(2+) by dysfunctional mitochondria result in enhanced NADPH oxidase activity, which may contribute to the development of cardiovascular diseases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CALL FOR PAPERS Integrative and Translational Physiology: Integrative Aspects of Energy Homeostasis and Metabolic Diseases Mitochondrial reactive oxygen species and calcium uptake regulate activation of phagocytic NADPH oxidase

Dikalov SI, Li W, Doughan AK, Blanco RR, Zafari AM. Mitochondrial reactive oxygen species and calcium uptake regulate activation of phagocytic NADPH oxidase. Am J Physiol Regul Integr Comp Physiol 302: R1134–R1142, 2012. First published March 21, 2012; doi:10.1152/ajpregu.00842.2010.—Production of superoxide (O2 ) by NADPH oxidases contributes to the development of hypertension and atherosclero...

متن کامل

O 22: Reactive Oxygen Species and Epilepsy

Seizure activity has been proposed to result in the generation of reactive oxygen species (ROS), which then contribute to seizure-induced neuronal damage and eventually cell death. Although the mechanisms of seizure-induced ROS generation are unclear, mitochondria and cellular calcium overload have been proposed to have a crucial role. We aim to determine the sources of seizure-induced ROS and ...

متن کامل

A functional NADPH oxidase prevents caspase involvement in the clearance of phagocytic neutrophils.

Neutrophils play a prominent role in host defense. Phagocytosis of bacteria leads to the formation of an active NADPH oxidase complex that generates reactive oxygen species for bactericidal purposes. A critical step in the resolution of inflammation is the uptake of neutrophils by macrophages; however, there are conflicting reports on the mechanisms leading to the apoptosis of phagocytic neutro...

متن کامل

Khz (Fusion of Ganoderma lucidum and Polyporus umbellatus Mycelia) Induces Apoptosis by Increasing Intracellular Calcium Levels and Activating JNK and NADPH Oxidase-Dependent Generation of Reactive Oxygen Species

Khz is a compound derived from the fusion of Ganoderma lucidum and Polyporus umbellatus mycelia that inhibits the growth of cancer cells. The results of the present study show that Khz induced apoptosis preferentially in transformed cells and had only minimal effects on non-transformed cells. Furthermore, Khz induced apoptosis by increasing the intracellular Ca(2+) concentration ([Ca(2+)](i)) a...

متن کامل

SK3 channel and mitochondrial ROS mediate NADPH oxidase-independent NETosis induced by calcium influx.

Neutrophils cast neutrophil extracellular traps (NETs) to defend the host against invading pathogens. Although effective against microbial pathogens, a growing body of literature now suggests that NETs have negative impacts on many inflammatory and autoimmune diseases. Identifying mechanisms that regulate the process termed "NETosis" is important for treating these diseases. Although two major ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Regulatory, integrative and comparative physiology

دوره 302 10  شماره 

صفحات  -

تاریخ انتشار 2012